Math 53 Discussion Problems Oct 10

1. Find $\frac{\partial w}{\partial v}$ when $u=0, v=0$, if $w=x^{2}+\frac{y}{x}, x=u-2 v+1, y=2 u+v-2$
2. Find $\frac{\partial w}{\partial u}$ when $u=\frac{1}{2}, v=1$, if $w=x y+y z+x z, x=u+v, y=$ $u-v, z=u v$
3. Find $\frac{\partial w}{\partial r}$ when $r=1, s=-1$, if $w=(x+y+z)^{2}, x=r-s, y=$ $\cos (r+s), z=\sin (r+s)$
4. A function f is called homogeneous of degree n if it satisfies the equation $f(t x, t y)=t^{n} f(x, y)$ for all t, where n is a positive integer.
(a) Show that if f is homogeneous of degree n,

$$
x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=n f(x, y)
$$

(b) Show that if f is homogeneous of degree n,

$$
f_{x}(t x, t y)=t^{n-1} f_{x}(x, y)
$$

5. Suppose that the equation $F(x, y, z)=0$ implicitly defines each of the three variables x, y and z as functions of the other two. If F is differentiable and F_{x}, F_{y} and F_{z} are all nonzero, show that

$$
\frac{\partial z}{\partial x} \frac{\partial x}{\partial y} \frac{\partial y}{\partial z}=-1
$$

